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An extension of the quantum logical approach to the axiomatization of quan- 
tum mechanics using nonstandard analysis methods is proposed. The physical 
meaning of a quantum logic as a lattice of propositions is conserved by its 
nonstandard extension. But not only the usual Hilbert space formalism of 
quantum mechanics can be derived from the nonstandard extended quantum 
logic. Also the Dirac bra-ket quantum mechanics can be derived as a conse- 
quence of such an extended quantum logic. 

1. I N T R O D U C T I O N  

It was shown during the 1960s and 1970s that the Hilbert space 
formalism of quantum mechanics can be derived from a set of  simple 
axioms of  the most general nature. The lattice structures appear, where 
each physical system can be associated with a partially ordered cr-ortho- 
complemented set L,r Each observable can be identified with an &.W-valued 
measure on the real Borel sets and each state can be identified with a 
probability measure on &r It was shown that there exists a set of axioms 
which implies that aLP is isomorphic to the lattice of  all closed subspaces of  
a complex Hilbert space (Mackey, 1963; Maqzynski, 1972; Piton, 1976; 
Beltrametti and Casinelli, 1976). Then the observables are nothing else but 
self-adjoint operators acting on Hilbert space, and the states are rays lying 
in Hilbert space. 

The problem arises when one tries to apply this way of  axiomatization 
to Dirac's formalism of quantum mechanics. Dirac's bra-ket formalism is 
not a separable Hilbert space theory from the mathematical point of  view, 
because it treats on almost the same footing observables with discrete and 
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continuous spectra (Dirac, 1958). Eigenstates of these two kinds of observ- 
ables both exist in the Dirac unitary space of states, the Dirac 6-function, 
for example, serving as a coordinate observable eigenstate. This space of 
states cannot therefore be a separable Hilbert one, which is also explicitly 
shown in Section 4. 

On the other hand, the mathematical essence of Dirac's formalism of 
quantum mechanics was determined to be of the theory of distributions 
(Roberts, 1966; Melsheimer, 1972). Especially the spectral theory of opera- 
tors in rigged Hilbert spaces proposed by Gelfand was developed to 
describe essential properties of the bra-ket formalism (Gelfand and 
Vilenkin, 1961; Roberts, 1966). In these theories one can describe states like 
the 6-function in a mathematically consistent way as functionals on the 
space of test functions, where the embedding takes place: the test function 
space f~ lies within the Hilbert space H, which in its turn lies within space 
of functionals f~" on f~. Then some states of a physical system can be 
represented as objects that do not belong to the Hilbert space H. 

That obviously causes trouble for the quantum logic approach, be- 
cause in its usual form [for review see Beltrametti and Casinelli (1976)] it 
leads to the essentially Hilbertian structure of the space of states. In the 
separable Hilbert space formalism that one can get from canonical ax- 
iomatic schemes of Mackey (1963) or Piron (1976) (see also Ma~zynski, 
1972) there are no eigenstates coinciding with points of a continuous 
spectrum of self-adjoint operators acting on the Hilbert space H. There is 
no place for the 6-function in H for this particular example of an 
"eigenvector." 

So, an attractive logical structure of quantum axiomatics has a very 
serious lack--it  does not have as a consequence the 'calculation back- 
ground' of quantum mechanics--the Dirac bra-ket formalism. 

Then, a natural question is: Is it possible to modify in some way the 
usual quantum logic scheme, conserving its logical structure of the lattice of 
propositions, to get Dirac's formalism of quantum mechanics? 

In the present paper we propose to build an extension of the quantum 
logical axiomatic scheme using nonstandard analysis methods (Davis, 1958; 
Stroyan and Luxemburg, 1976; Albeverio et al., 1986). 

The nonstandard analysis invented in the 1960s by A. Robinson is a 
new approach to the infinite and infinitesimal numbers which allows us to 
treat the finite, infinite, and infinitesimal numbers on the same footing as 
members of an extended field of numbers *R, which is often called the 
hyperreal field of numbers. In distinction from the usual real field R that 
does not contain numbers which are less or bigger than any real number, 
such curious (for the usual mathematics) objects can be defined in *R in a 
natural and self-consistent way. 
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Moreover, nonstandard analysis is a very powerful tool for the exten- 
sion of mathematical models which can be defined as some axiom systems 
applied to sets of elementary objects--'points,' and not only to the fields of 
numbers. Thus, in principle, one can apply it for the extension of quantum 
logic, because it is exactly such a mathematical object. 

Of course, also the Hilbert space over R or C itself can be extended 
together with the operators on it to get an extended mathematical model of 
quantum mechanics. It was shown by Farrukh (1975) that such a "hyper- 
Hilbert" space *H over the field of "hypercomplex" numbers *C fits to the 
Dirac space of states. But to our knowledge no attempt had been made for 
continuation of this work, especially for the axiomatization of this theory. 

In this work, which can be considered as an attempt to build an 
axiomatic background for Dirac's non-relativistic quantum mechanics, it is 
shown that in distinction with the usual quantum logic, its nonstandard 
extension can have as a consequence Dirac's formalism of quantum me- 
chanics. That follows from the fact that in this theory spectral properties of 
observables with discrete and continuous spectra are considered equally. 
Together with this, the nonstandard extension conserves the logical struc- 
ture of quantum axiomatics. 

This article is built in the following way. In Section 2 the methods of 
nonstandard analysis are outlined. In Section 3 the quantum logic axioms 
are formulated in the form needed for its nonstandard extension. One can 
skip these two sections for review, and they do not contain essentially new 
results. Section 4 discusses the spectral properties of observables of the 
usual quantum logic. It is shown that the spectral properties of the 
observables with discrete and continuous spectra are of very distinct 
features. "Eigenstates" in their usual mathematical meaning can exist only 
for the first ones, but not for the second ones. In Section 5 the nonstandard 
extension of the quantum logic described in Section 3 is built. Finally, 
Section 6 discusses the spectral properties of observables of the nonstan- 
dard quantum logic. A special "spectral axiom" is introduced, which states 
that the "infinitesimal measuring error does not lead to the change of 
proposition." This axiom implies the essentially Dirac bra-ket properties of 
the set of states associated with the nonstandard quantum logic. 

2. A SHORT DESCRIPTION OF THE NONSTANDARD 
ANALYSIS METHODS 

The nonstandard analysis operates with such notions as individuals 
(or points), ultrafilters, superstructures, and languages and the main tool 
we shall use is the Transfer Theorem. We shall give all the necessary 
definitions here. For more detailed explanations one can turn to Davis 
(1977) and Albeverio et al. (1986). 
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We shall say that S is a set of  individuals (or  points) if every member 
of S does not contain subsets. Every point is in some sense an irreducible 
object. One can choose as a set of  individuals, for example, Hilbert space 
H, fields of  numbers R or C, or lattice A a. 

The standard superstructure is built under the set of  individuals S as 
follows: 

Vl ( S )  = S 

Vi+ i(S) = Vi(S ) k.)~(Vi(S)) (2.1) 

f'(s)= 0 vi(s) 
i = 1  

Here ~(A) = {BIB ~_ A } - - t h e  power set of  A. 
The superstructure I7"(S) includes all the mathematical notions we need 

(individuals, sets, functions on individuals and on sets, Cartesian products 
of  sets, etc.). The notions x e A ,  x c_A, x c A ,  x = y, {xl . - .} ,  {xeAI  . . .}, 
A \ B  have their usual set-theoretical meaning in 12(S). Through 
(a,  b )  = {{a}, {a, b}} an ordered pair of elements of  12(S) is denoted. 

For  two sets A and B their Cartesian product is defined as 
A x B = {(a, b ) l xe A ,  y e B } .  If  R c_ A x B is a relation, then we write xRy 
in place of  (x,  y ) e R .  By dom(R) the domain of  relation R is denoted. 

By {Xi lieI} a function from the set I to the set X is denoted when we 
are more interested in its range than in its domain. The set I is called then 
an index set, and instead of  a function we speak of an indexed family. 

Let a, r e  17"(S). If  there exists one and only one b e  IJ'(S) for which 
(a, b)~r,  we write r T a = b; if this is not the case, we set r T a = ~ .  The 
operation T possesses the following properties: 

1. If r is a function and a~dom(r) ,  then r T a = r(a). 
2. r T a ~ v ( s )  for all r, a ~ 17"(S). 

The nonstandard extension of the set of  individuals S (denoted as *S) 
can be built using the ultrafilter construction. We shall show the way it can 
be done by an example of the field of real numbers R. 

Let ~ _ S. Let I be some index set (here we put I = ~,  but it can be 
in principle any infinite set), and o~ is a free ultrafilter on N, i.e., ~ e ~ ( N )  
is the set of  subsets of  N such that: 

1. Neon,  ~ e ~ .  
2. A i , . . . , A , e ~  ~ A l C ~ . . . c a A ,  e ~ .  
3. A ~ ,  A ~ _ B ~ B ~ .  
4. E = {rn I . . . . .  m,} ,  m i s R  ~ E ( E ~  r. 
5. VE _ N or E e ~  or N\Ee6~-. 
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Now we define a new set R n as the set of all sequences {xi },'~x in R, or, 
which is the same, as the set of all functions from I to R. We shall say that 
two sequences f and g are equivalent ( f  ~ g) if 

{ie Nil- = g ~ } e ~  (2.2) 

The equivalence relation ,,, defines classes of equivalence on g~: 

f =  (g~ N~tg ,,,f} (2.3) 

The quotient set R TM by ,,, is denoted as Rn/8 r and called the ultraproduct 
of the set of  individuals R. 

All operations defined on the full ordered field R take their interpreta- 
tion in RN/~.  For example, 

f +  g = c ~ {ie NIf~ +g, = c i } ~  

f ~  g ~-r {iel%llf~ < gi}~,~ 

etc. 

(2.4) 

(2,5) 

The set t~ can be naturally put into RN/~ " by the constant sequences 

aeg~--*(a, a, a . . . .  )~  RN/~  (2.6) 

RN/~ " iS called then the 'nonstandard extension' of  R and denoted as 
*R. We shall identify the usual real numbers R and their image in *R 
(constant sequences). Then R ~ *R. 

*R obviously is not isomorphic to •. For example, an element 
a = ( I ,  2, 3 . . . .  ) is such that a > x ,  Vx~R. In other words, a is greater 
than any real number, and, for example, b = (�89 l l ~, ~ . . . .  ) is less than any 
x e R .  

In general, the following subsets exist in *R: 

1. Infinite numbers Inf(*R) _ *R: 

ae lnf (*R)  ~Vn~l%l, lal > n  (2.7) 

2. Finite numbers Fin(*~) c *R: 

aeFin(*R) ~ m ~ ,  I a] < m (2.8) 

3. Infinitesimal numbers I _ *R: 

1 
a I-,Un W+, lal < -  (2.9) 

n 

It is clear that R ~ Fin(*R), but Fin(*R) contains also other, near- 
standard elements that do not lie in R. It can be shown that if x~Fin(*R) 
and x e R ,  there exists a single y e R  such that Ix -yleI. We shall write in 
such cases x ~ y. 
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As the superstructure 12(S) was built under the individuals S, the 
superstructure 12(*S) can be built in an analogous way by the substitution 
S ~ *S using the same definition. 

We have seen that the properties of R can be translated into *R. Also 
the specially formulated (by the means of the formal language) properties 
of the standard superstructure 12(S) can be translated to I2(*S). To 
proceed we shall formulate the notions of language and of the Transfer 
Theorem. 

The language L(12(S)) can be associated with the standard superstruc- 
ture 12(S) in which one can formulate assertions about I7"(S). 

The elementary formulas in L(fz(S)) are the expressions 

l . a = b  
2. (a,b)  
3. (a ~ b)=c 
4. a~b 

where a, b, c are constants (concrete elements) of 12(S), or variables which 
can take any value from 12(S). 

Using the elementary formulas, one can generate the class of all 
formulas (or expressions) of L(~'(S)) by the help of the prepositions 

& 'and' 
---, 'if' 
o r  ' o r '  

'if and only if' 
--1 'not' 

and quantors 

Vx 'for all x (in V(S))' 
3x 'there exists x (in 12(S))' 

by the rules 

1. I f ~  and W are formulas in L(12(S)), then ~&W, ~orW, -qO, ~ W ,  
and �9 ~ W are also formulas in L(19(S)). 

2. I f ~  is a formula in L(V(S)) and x is a variable, then 3xO and Vx~ 
also are formulas in L(~'(S)). 

The most general form of a formula of the language L(~'(S)) is 

tI) = tI)(xi . . . . .  x,,) (2.10) 

where xi are free variables (i.e., not restricted by the quantors & and or) 
that take their values in 12(S). 
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Every formula has the direct interpretation in V(S): 

if ~(x) is a formula in L(I?(S)) and A ~ I7"(S), then the expression ~(A) 
expresses an assertion about A which is true in 17"(S) 

For example, we shall say that 'X is a set' if 

�9 ( x )  = { (x  = 0) o r  (3xeX)(x = x)} (2.11) 

So, if A e V(S) and ~(A) is true, then A is a set in I7"(S). On the other hand, 
if A is a set in 17"(S), then ~(A) is true. 

In such a way all the necessary expressions and propositions about 
I7"(S) can be generated. 

But formulas of the language L(~'(S)) can be also interpreted in the 
extended superstructure I?(*S)! 

Indeed, one can proceed by the help of a construction which is 
analogous to the ultrafilter construction for individuals. Now it is called the 
limited ultrafilter construction. 

A sequence of the elements of I~(S) {A(i)ji e I} is limited if there exists 
a fixed number m E N such that (VieI)(A(i)~ Vm(S)). The set of all limited 
sequences is denoted as I~(S) I. Two limited sequences are equivalent 
according to the free ultrafilter ~,~ on L A ~ B, if {i~IlA(i) = B ( i ) } ~ .  

We shall denote classes of equivalence of the sequences of I?(S)I as 
As = {Be(/(S)IB , ,~A} .  Then by the limited ultraproduct I~(S)*/,~ we 
shall call the quotient set I7"(S) I by H I. 

In the limited ultraproduct 12(S)~/~ the elementary formulas of 
L(I~(S)) can be interpreted: 

A s = B~ ~ {i6IIA(i ) = B(i )}~Y 

(As ,  B~ ) = C~ *-~ {i~I](A(i), B(i) ) = C ( i ) } ~  
(2.12) 

(As ~ B~) = C.~ ~ {i~II(A(i ) T B(i)) = C(i) }6~- 

As ~B~ ~ {i~IlA(i) ~B(i)} ~ 

The prepositions and quantors conserve their logical meaning under all 
sets; then one can interpret in fz(S)l /~ the class of all formulas of L(I?(S)). 

There exists a natural embedding of the standard superstructure into 
the limited ultrapower: 

i: V(S) ~ V(S) I /~  (2.13) 

where i (A)= (A, A, A . . . .  )~  is a class of equivalence of the constant 
sequence of elements of F'(S). 

However, the limited ultrapower P(S) I /~  is not isomorphic to the 
nonstandard superstructure I2(*S). There exist sets in 12(*S) (the so-called 
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external sets) that have no domain in 17"(S)I/,~. But there exists an 
embedding 17"(S)I/~ into 12(*S) 

j: f"(S)'l~ ~ r (2.14) 

such that 

1. If  As ~*S, then j(A~) = As ,  where *S = S~/~e  f'(S)Z/~ 
2. If  A~6*S, then j(A~) = {j(B~)[B~A~}. 

The mapping j is defined by induction; it conserves all the elementary 
formulas that are interpreted in the limited ultraproduct f"(S)l/~. 

Combining the mappings i and j,  one receives a new 'star' *-map- 
ping--*A =j(i(A)) from 17"(S) into 17"(*S). The *-mapping satisfies the 
Transfer Theorem. 

Let r X 2 , . . . ,  Xk) be a formula in L(V(S)), where Xi are free 
variables. Giving to every Xi either the value Ai from 17"(S) or *Ai =j(i(Ai)) 
from 17(*S), one interprets this formula either in I7"(S) or in I7(*S). 

Theorem 1 (Transfer Theorem). Let A1 . . . . .  An~I;'(S). Then any 
assertion �9 in L(I;'(S)) which is true for A l, �9 . . ,  An in 17"(S) is also true for 
�9 AI . . . .  , *An in I7"(*S) and vice versa. 

Sets of the nonstandard superstructure I~(*S) are divided into three 
classes according to the star *-mapping: 

1. A set A is called standard if 3B ~ I;'(S) (A = *B). 
Standard sets in I2(*S) are those that can be obtained from the 
constant sequences of the elements of I7"(S). 

2. A set A is called internal if 3B~f.'(S) (A ~*B). 
Internal sets can be obtained from the limited sequences of  elements 
of 17"(S). 

3. A set A is external if it is not an internal one. 

So assertions about sets in I7"(S) can be transferred to the assertions about 
the internal sets in I~(S), and vice versa. 

One can say a priori nothing about the external sets (if they exis0 in 
IT"(*S). The answer to the question of the existence of external sets [and in 
general, of the existence of nonstandard elements in I2(S)] depends on the 
choice of the index set I and the ultrafilter on it. We shall not consider that 
here. We shall intend, and it is enough for our purposes, that I and the 
ultrafilter on it are such that they allow the existence of nonstandard 
elements by extending the real axis R. It is known that such a choice is 
possible (Davis, 1977; Albeverio et al., 1950). 

We list now briefly the properties of  the internal sets in I7"(*S) and of 
the *-mapping. 
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By definition, all the internal sets are contained in the image of  the 
standard superstructure *I;'(S) in the extended superstructure IT"(S). The 
subset of  the extended superstructure * ~'(S) we shall call the nonstandard 
universum, and its domain IT"(S) the standard universum. 

We shall call the set A definable in I)(S) if there exists a formula ~(X) 
in L(I)(S)) such that 

A = {b (2.15) 

It can be shown that 

*A - {b E* V(S)I~(b)} (2.16) 

and the mapping * defined in such a way does not depend on the concrete 
formula q) (Davis, 1977). Exactly so we shall build concrete internal sets in 
IT"(*S), which are called extensions of  sets from 12(S). 

The word 'extension' is justified by the following properties of  the * 
operation: 

I. I f A _ _ S ,  t h e n A _ * A  a n d * A n S = A .  
2. The mapping * conserves the u ,  n ,  ~_, and \ operations. 
3. Functions 2 f ~  V(S), which are defined on individuals S and have 

their range also in S, can be continued in 12(*S) from S m to *S m 
(Davis, 1977). 

That  is, if  x, y ~ S and if *f(*x) = *y, and because *x = x, *y = y, one 
has *f(x)= yo Thus, we shall omit a star at such an extended function 
*fE 17"(*S). For  example, we omit stars at the operation + ,  �9 on the field 
* ~ .  

The set of  individuals may contain subsets that are of  a different 
nature. For  example, S = H u C, where H is a Hilbert space and C the field 
of  complex numbers. Then we define in an analogous way the extended 
superstructure I;'(*H u *C) and the mapping * 

Conclusion 1. If  there is some mathematical structure that is defined by 
axioms (i.e., by formulas) in the standard universum, then the extension of  
this structure is a subset of the nonstandard universum, which is defined by 
the same set of axioms, but interpreted yet in the nonstandard universum. 

The scheme of doing this can be as follows: 

1. Choose the set of  individuals S and build the standard superstruc- 
ture I;'(S). 

2The notion of a function is in fact an abbreviation of its full definition in the formal language 
L(t~(S)). One can find it, for example, in Davis (1977). 
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2. Build the extended set of individuals *S and the nonstandard 
superstructure I?(*S). 

3. Define the necessary mathematical structure in the standard super- 
structure by the set of axioms (formulas) {tI) i }7= 1, formulated in 
the formal language L(f,'(S)). 

4. Translate this axiom system to the nonstandard universum using 
the Transfer Theorem to receive a new extended structure, which is 
defined by these axioms. 

We shall use this scheme for the extension of quantum logics in the 
next sections. 

3. THE FORMALIZED QUANTUM LOGIC SCHEME 

In this section we shall formulate all the axioms and conclusions of the 
quantum logic (Beltrametti and Casinelli, 1976) in the language L(f"(S)) 
that lead to the separate Hilbert space formalism of quantum mechanics. 
Its main result is formulated in the language L(17"(S)) algebraic structure of 
quantum mechanics, which we shall call the (Y', Sa(H), f#) theory. From 
the point of view of the nonstandard analysis, it is a set of formulas 
{~;}7= 1 about the elements of superstructure 17"(S). As we said in the 
previous section, using the Transfer Theorem, we shall be able to build an 
extended (nonstandard) quantum logic afterward in the nonstandard uni- 
versum * V(S). 

3.1. Preliminary Considerations-- ((D, f~, p( �9 ) )  Theory 

The following assumptions form the basis of the axiomatic approach 
to quantum mechanics. 

1. The following abstract sets exist, which define every physical sys- 
tem: (9, the set of observables; f~, the set of states; 9~(R), the set of intervals 
of the real axis ~ where the observables take their values in after measure- 
ment. 

Axiom 1. 9~(R) is a family of the Borel subsets of •, i.e.: 

1. Union and intersection of not more than a countable number of 
elements of 9~(~) are contained in &(R). 

2. R\E~9~(~) for any Eg~(R). 
3. Any open ball Br(x)= {Y~I Ix-y[ < r} belongs to 9~(R). 

2. There exists a function p(A, ~, E): (9 x f~ x 9~(R) ~ [0, 1] ___ R, 
which is a probability that in the process of measuring the observable A of 
our physical system in the state c2, its values lie within the interval E from 
~(R).  
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There exists a set do = (9 x ~ ( ~ ) ,  a~do ~ a = <A, E ) ,  which is called 
the set of  propositions. Then (A, E> is the question: Does the value of  the 
observable A lie in the interval E? On d o a function p ~ ( . )  is defined: 
pa(a) =p(A, 02, E), a = (A, E>. We shall take x ~ y  for x ~do, yedo, if 

~/02~ pe,(x)=p~(y) (3.1) 

Let ~a = do/~ be the quotient set do by the equivalence relation ,-~. The set 
~ '  is called the logic of  the quantum system. We shall denote by ~E5r the 
class of  propositions as 

= {a~dola ~ x } ,  x~do (3.2) 

Also the operation of  orthocomplementat ion can be defined on do: 

a = <A, E> -~a  • = (A, R \E>  (3.3) 

The element a • stands for the proposition which is the negation of  the 
initial proposition a. 

Axiom 2. VA ~(9, \ /02~,p(A, 02, E) is a probabili ty measure on ~)(R): 

1. p(A, 02, ;,?j) = O, p(A, 02, ~) = 1. 
2. I f  {EiIiEI~} ___ ~ ( ~ )  and EinE:  = ~ ,  i #,h then 

p(A ,  02, U E~)= ~. p(,02, ,~ (3.4) 

Axiom 3. I f  for all observables A ~(9 and for all the intervals from 
~ ( ~ ) .  the probability p(A, r E) = p(A, ~, E) is the same for two states 02 
and/~, then these two states coincide. 

Let us build a set of  functions : from ~ to [0, 1] as 

~r = {02: ~: ~ [0, 1] I02@ =pa(a )  VaESe} (3.5) 

and the set of  mappings from ~ ( ~ )  to 5e: 

~ = { .~ :  ~ ( ~ )  ~ ~eI#A(E) = <A, E>, VA e(9, VE~M(~)} (3.6) 

The set ff is called the set of  probability measures on the logic La, and 
is the set of  &a_valued measures on ~(R).  From now on we shall identify 

these sets with the set of  states f9 and with the set of  observables (9, 
respectively. 

Axiom 4. For  every sequence of elements of  ~ ,  {a;lieN} _ LP, such 
that for every state 02 from f#,3 

02(a~) + ~(a:) <- 1, i # j ~  (3.7) 

aWe say that a is orthogonal to b (a _L b) if ~(a)+~(b) < 1, V~(. )e~. 
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there exists a~&asuch  that 

~ (a )=  ~ ~(ai) (3.8) 
i E N  

Axiom 5. Every a-convex combination of the states of f# is also 
contained in f#, in other words, 

V{ot,(.)li~}~f#, V{t, l i~}_cR, such tha t  ~ t , = l  (3.9) 

there exists ~( �9 )~ff  such that 

~(a) = ~ tfii(a) for all a~La (3.10) 

These five axioms define the mathematical structure that contains the 
logic ~ ,  the probability measures f# on ~e, and ~ -va lued  measures ~r on 
~(R) .  

Conclusion 2. The logic f f  has the following properties: 

1. ~e is a partially ordered set. 
2. f f  contains the least element 0 and the greatest element i such that 

< a < i for any a ~.s 
3. The set ~ possesses an orthocomplementation map • 
4. The least upper bound (see definition in Section 3.2) a = V;~N at 

exists in ~ for any countable set of its mutually orthogonal 
elements (ai _1_ aj). 

5. s is an orthomodular set (Beltrametti and Casinelli, 1976). 

Conclusion 3. The properties of the order-defining a-convex family of  
probability measures f# are: 

1. (Va, b ~,L~ a) ( W ( . )  ~f#) (a < b ~ W ( .  ) ~c~ o2(a) < a(b)). 
2. (v{~,( .) l ieN} ___fr (v(t, li~N } _ R*) (Y~,~ t; = 1) 

(3c2(.)~f#) ( ~ = ~ t ; , , ) ; , n  (3.1t) 

3. a(0) = 0, a( i )  = 1, for any ~(.  ) from f#. 
4. ( V ~ ( . ) ~ )  (V{a~}~N ~_ .s (i ~j--}ag _k aj) 

~ v;~n a,~=/ ,~N ~ 02(a~) (3.12) 

A state a~f# is called a pure one if it is not a convex combination of  
other states from f#. Otherwise it is called mixed. 
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Conclusion 4. The properties of  the set of  A~ measures ~ are: 

1. (v~ ,~ (R) )  ( w ~ ( ~ ) )  (v~s~) 

E, raE2 = ~Z~ -* #(E,) l #(E2) (3.13) 

2. v~,e~c, v{e,[ie~} =_~(R) (i ~ j - - , e , c ~ e j  = ~ )  

/.t ( Ur ~ E,) = V #(E,) (3.14) 

3. (v#~r) 
( /a(~) = 0) & (/~(~) = i)  (3.15) 

3.2. Axioms of the (A e, &o, fq) Theory 

In this section we continue to formulate the axioms concerning the 
structure of  the logic s needed for the formulation of  the quantum logic 
of  the separable Hilbert space quantum mechanics. 

Let the binary operations exist on s (the least upper bound and the 
greatest lower bound) 

V ~ ( a , b ) = a  v b ~  (3.t6) 

A I" (a ,  b )  - a ^ b~(,r (3.17) 

dora( v ) = dora( ^ ) = ~e x La, ran( v ) = ran( A ) = ~ .  Their properties 
are defined in the following axiom. 

Axiom 6. The logic of  the physical system ~a possesses the v and ^ 
operations with the following properties: 

1. Idempotention: (Vx ~ s 

(x ^ x = x )  & (x v x = x) (3.18) 

2. Commutativity: (Vx~& ~ (Vye;La) 

(x A y  = y  AX) & (X v y  = y  VX) (3.19) 

3. Associativity: (VxELf) (Vy = s (VzeLP) 

{x A (y  ^ z) = (x A y) a z} & { x v ( y v z ) = ( x v y ) v z }  (3.20) 

4. Completeness: (VA ~ ( ~ ) )  (3aeSe)  (VxeA) 

& ( 3 t E s  a) (Vx~A) 

and dually for v .  

x ^ a = a (3.21) 

x A t = t - - , a A t = t  (3.22) 
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The next axiom determines the compatibility of the existing partial 
ordering on ~ and a new one defined by the new operations v and ^ .  

Axiom 7. Compatibility of the partial ordering definitions on s 
(Vx e ~ )  (Vy e &,e) 

x < y  ~--~x ̂ y  = x  *-~x v y  = y  (3.23) 

The properties of the previously defined operation of orthocomple- 
mentation are specified in the next axiom: 

Axiom 8. The orthocomplementation on s has the following proper- 
ties: 

1. (Vx~2:) 

(xI)  • = x (3.24) 

2. (Vx~& o) (Vy~& a) 

{(x ^ y ) "  = x  • v yX} & {(x v y)J- = x  • A y• (3.25) 

3. ( V x e 2  ~ 

( x v x  •  & ( x ^ x  •  (3.26) 

The introduced axioms imply that the logic of the physical system L,e 
is a lattice. The last axiom in this subsection specifies the properties of this 
lattice. 

Ax iom 9. 1. The lattice L,r is orthomodular: (Va~s ( V b ~ )  

a < b ~ b  = a v (b ^ a -L) (3.27) 

2. The lattice ~ is atomic: ( V x ~ )  ( 3 p ~ ) ,  

(p covers 0) & (p -< x) (3.29) 

3. The lattice s possesses the covering property4: (Vx ~ r  (Vp ~Z:) 

{(p covers 0) & (--1 (p <__ x)} ~ (x v p covers x)) (3.30) 

4. The lattice ~ is irreducible: Va~q  ~ 

{ ( ~ z ~ )  (z = (z ^ a) v (z ^ a ' ) ) }  ~ (z = 0) or (z = i )  (3 .31)  

Thus, the cited axioms say that the logic L# is a complete irreducible 
orthomodular lattice with the covering property (a complete irreducible 

4"b covers a in Sa,, means that (Va~e) (u ES a) 

(3c~e) (a -< c) & (c ~ b)~(c =b) or (c =a) (3.28) 
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OAC-lattice). Remember that the structure (L~ a, -<, ~-, v ,  /x ) is defined 
now in the language L(l?(S)). 

3.3. The ~e(H) Lattice 

There exists a connection between the lattice Ae and the lattices of the 
subspaces of vector spaces. 

Let H be a vector space under the division ring K and with the 
involutive antiautomorphism 2 ---> •, 2 e K  (Magzynski, 1972; Beltrametti 
and Casinelli, 1976). The Hermitian form f (  �9 �9 ) is defined on H with its 
properties (Akhiezer and Glazman, 1950). Its formalized definition in the 
language L(V(S)) can be found in Davis (1977), for instance. We suppose 
that H g S ,  K ~ S .  

Introduce a unary operation on ~ (H) :  

~ T a = a ~  dom(~ = ~ (H)  (3.32) 

such that (Va ~N(H)) 

a ~ = { b e H l f ( c ,  b) = O, V c ~ a }  (3.33) 

The subspace u of H is called closed if u~176 = u. Define the set of all 
closed subspaces in H as 

L#(H) = {ue~(H)]u  ~176 = u} (3.34) 

Binary operations v and ^ are defined on L#(H) such that for 
Va eAe(•), Vb eL#(H), 

( a v b = ( a + b )  ~176 & ( a / x b - a n b )  (3.35) 

Here a + b is a linear envelope of the subspaces a and b. 
Also the partial ordering is defined on ~e(H) by inclusion: for 

Vae~(H), Vb~(H), 

a < b  *-->a c__b (3.36) 

Thus, we see that ~e(H) is a lattice. Moreover, the following theorem holds 
(see, for instance, Piron, 1976; Beltrametti and Casinelli, 1976). 

Theorem 2. Let &: be a complete irreducible OAC-lattice with length 
greater than 4. Then there exist a division ring K with involutive antiauto- 
morphism ~---, ~. ( ~ K )  and a vector space H on K with the well-defined 
Hermitian f o r r n f ( . ,  �9 ) such that L# is orthoisomorphic to the lattice Ae(H) 
of  closed subspaces of H. 

Axiom 10. The ring K defined by the lattice Ae is the field of complex 
numbers C. 
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Then, using the Amemiya and Araki (1986) theorem, we conclude that 
H is nothing else but a Hilbert space, and the defined Hermitian form f is 
the scalar product ( �9 ,. ) in H. 

Formalizing this in the language L(~(S)), we say: 

Conclusion 5. 1..LP ~_ S, H ~ S, C ~ S, where ~e is a subset of the set 
of individuals S, which is defined by Axioms 6-9,  and H is a complete 
Hilbert space on the field C [for a full axiomatic description of H and C, 
see Davis (1979)]. 

2. There exists a bijection 

#: &q ,~-~> La(H) (3.37) 

such that 

(a) Va~L#, Vb~L,e (a < b ~--~/z(a) < p(b)). 
(b) Va~A a (p(a • = (#(a))~ 
(c) VaiL, e, Vbe~e (#(a v b) =/t(a) v #(b)) & (#(a A b) =/t(a) A #(b)). 

3.4. Observables and States in ( ~ ,  ~ ( H ) ,  ~q) Theory 

The states can be characterized by the help of the Gleason (1957) 
theorem and the observables by the projector-valued measures. 

It is known that to every dosed subspace u in H an orthogonal 
projector can be brought to coincidence (Akhiezer and Glazman, 1950). 
Thus, to every aeAa(H) there exists a projector pa: H ~ H. One can put to 
coincidence with every Aa-valued measure x a projector-valued measure 

e e  =- px(E): ~(R)  ~ {PM}M~_~(H ) (3.38) 

with the following properties: 

1. 

P o  = 0, P~ = 1 (3.39) 

2. V E I ~ ( R  ), VEz~&(I~), 

El hE2  = ~ ~ PJz~Pe2 = Pe2Pe, = 0 (3.40) 

3. V { E t ~ ( R ) I i E [ ~ }  (i ~ j ~  Eic~E: = :,~) 

PUg, = ~ P~, (3.41) 
ie N 

By their definition and using the isomorphism L# ~. Ae(H) ~ {pM}, the 
states are the probability measures on the projectors. By the Gleason 
theorem, if dim(H) is greater than 3, the set of pure states is exactly the set 
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of functions 

m4,: ~(H)~--~[0,1], w h e r e ~ H ,  11411=1 (3.42) 

such that 

m~(M) = (~b, pMq~), M ~ ( H )  (3.43) 

The set of all states is therefore the set of all convex combinations of 
the pure states m~. 

To this end, the previous axioms were defined only for not more than 
countable sets. Thus we are allowed to speak only about the case of the 
separable Hilbert space H. But for the necessity of our axiom system we 
need nevertheless an axiom of separability. 

Axiom 11. The Hilbert space H determined by the previous axiom 
system is separable. 

4. SPECTRAL PROPERTIES OF OBSERVABLES IN 
<~ ,  ~ ( H ) ,  f~ THEORY 

In this section, spectral properties of observables (~a-valued measures) 
are considered. By the spectrum s(x) of the observable x we mean, roughly 
speaking, the minimal subset of the set of real numbers E such that 
x(s(x)) = i. It is clear that if I ~ s(x), then x(1) = O. 

In the separate Hilbert space formalism, if s(x) is a countable subset of 
•, then the so-called eigenstate ~ i ~  corresponds to every 2;ss(x) with its 
definite properties (von Neumann, t955). If in the next turn s(x) is 
uncountable, the definition of the family of eigenstates parametrized by 
points from s(x) cannot be carried out properly. 

On the contrary, the Dirac formalism of quantum mechanics allows 
us to define such families {a~ [2~s(x)} for observables either with discrete 
or continuous spectra. 

We shall demonstrate here that the quantum logic ( f ,  Ae(H), fg) 
formulated above does not allow the definition of the eigenstates for the 
observables with continuous spectra. It means, therefore, that Dirac's 
formalism cannot be derived from this version of quantum logic. 

Some more definitions follow. 
The resolvent set for an observable x~Y" is the set 

r(x) = U { i ~ (R ) l = ( x ( / ) )  = 0, w ~ }  (4.1) 

The spectrum of an observable xESf is the set 

s(x) = R\r(x) (4.2) 
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The spectrum s(x) is discrete if s(x)~_ ~ is not more than a countable 
subset of  ~. It is continuous if it is not discrete. A continuous spectrum is 
called mixed  if it contains isolated points. A continuous spectrum is purely 
continuous if it is not mixed. 

The spectrum of any observable can be decomposed into discrete and 
purely continuous parts sp and s c 

s(x) = Sp(X) ~ so(x) (4.3) 

4.1. Observables with Discrete Spectra 

L e m m a  1. Let 2 be an isolated point in the spectrum of  an observable 
x. Then 3 e ~  +, V ~ R  + 

6 < r ~ x((2 - 6, 2 + 6)) = x((2 - c, 2 + E)) (4.4) 

Moreover,  if 32eR,  3EeN + such that for V6eR + 

O < E ~ x ( ( 2  - 5, 2 + S)) = x((2 - E, 2 + E)) (4.5) 

then 2 is an isolated point in the spectrum of  xsY ' .  

Proof. Let E ~ g ( N ) ,  2 e E ,  and there is no other value of  s(x) lying in 
E. Such an interval E always can be chosen for 2 isolated. Let E" c E and 
E'\E = A. 

Then E'uA=E, Ec~A=~. Note that either 2r 2eE' or ~.EA, 
2 r  

By the properties of  5e-valued measures (Conclusion 4) 

x (E)  = x ( E '  t3 A) = x(E ' )  v x(A) (4.6) 

Because either A or E '  belongs to the resolvent r(x), and for definiteness 
choosing 2 e E ' ,  we have 

x(A) = 0 and x (E)  = x (E ' )  VE" ~ E (4.7) 

I f  V6<E,  x ( ( 2 - 6 ,  A + 6 ) ) = x ( ( A - - c , A + E ) ) ,  then for all A =  
(2 - 6, 2 + 0)\{2}, x(A) = 0, and therefore A _c r(x). Thus, any point e e R  
such that [e - 21 < E belongs to the resolvent r(x) and ~t is an isolated point 
in the spectrum of  x sX. �9 

Because s = ~ ( H ) ,  we can as usual define a function of  dimension on 
the finite subspaces of  H: 

dim: g~  ~_ ~ ( H )  ~ N (4.8) 

where g~  = { a ~ ( H ) 1 3 m o ~ r ~  dim a < mo}. 
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Consequence 1. Let x e X ,  and 32eSp(X), 3 E e ~ ( ~ ) ,  such that 2 e E ,  
x(E) ~ ~  and VE'_c E, such that 2 e E', x(E) = x(E'). Then 

r E '  ___ E dim x(E) = dim x(E') (4.9) 

Definition 1. We shall call 2eSp(X) a simple discrete point of the 
observable x if (Vfi e R +) (3E e E+) 

5 < c --* dim(x((2 - 5, 2 + 6))) = 1 (4.10) 

2 esp(x) is called a discrete point of  finite multiplicity of the observable x if 
(VOe~ +) (3EeR +) 

5 < e --* dim(x((2 - 5, 2 + 6))) e N (4.11) 

Lemma 2. I f  2 esp(x) is a simple discrete point of  the observable x e ~  r, 
then there exists a state m~. such that (VSeR +) (3EeR +) 

3 < E ~ m;.(x((2 -- 6, 2 + 3))) = 1 (4.12) 

2 6 E ~ m~ (x(E)) = 0 (4.13) 

Proof. It is sufficient to choose ~.  e l l ,  II qsz [] = 1 such that 

PX((~-~'~+~))ga~ = ~b~. if 5 < 2 (4.14) 

It is possible in a unique way, since 

dimPX((;~-~'~+~))= 1 if 6 < 2  (4.15) 

The required state is 

m~(M) = (~;~, PM(o;~), Me&a(H)  (4.16) 

Let E e M ( R )  such that ( 2 -  3, 2 + 3 ) ~ E  = ~ .  Then 

( (o;~, Px(*:)(o~.) = ((o~, e ~(0 ,~,;~ + ,~))p x(F~)c~:~ ) (4.17) 

But by the properties of  ~ - v a l u e d  measures, if 

x(E) I x((2 - 5, 2 + 3)) (4.18) 

then px(e)px,~- a,~ + ~)) = 0. Thus m~ (E) = 0. [] 

The physical meaning of  the state mz is that in this state the 
probability to find the system in any sufficiently small interval of  the values 
of  x e S r  containing 2 is one with certainty, and in any other interval it is 
zero. 
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We see that if {2~[isN} ~s(x)  is a family of  isolated points in the 
spectrum of x e3f, then there exists a set of  states {mz,[ieN} parametrized 
by the points of the spectrum of s(x), and such that mx~(x(2j)) = 6~j 5. 

Definition 2. The states ma of the previous lemma we shall call the 
eigenstates of the observables x eY'. 

I f  we remember that x(E) belongs to Hilbert space H, we get the 
following result. 

Conclusion 6. If  ma and mz are the eigenstates corresponding to the 
simple discrete eigenvalues 2 and 2" of  the observable xeY',  then -. 

1. Gleason's pure states mo and m4. correspond accordingly to these 
states. 

2. The corresponding normalized vectors ~b and q~' are orthogonal in 
H. 

The mean value of the observable x s X  in the state m is (concerning 
only the discrete part of  the spectrum) 

m(x) = ~ 2m(x(2)) (4.20) 

Thus, if m~ is an eigenstate of the observable x, corresponding to the 
eigenvalue 2 esp(x), then clearly m~(x) = 2. 

4.2. Observables with Continuous Spectrum 

Lemma 3. If  E ~ ( g ~ )  and E~sc(x) for x ~ ,  then VA, B c Esuch  that 
A, B ~ ( R ) ,  

A c B ~ x(A) < x(B) (4.21) 

Proof Let B = A • At, A c~A, = ~ .  Then x(A uA , )  = x(A) v x(Ac). 
Since A, c E, then x(A~) # 0 by the spectrum definition. Also by definition 
x(A) l (A~); consequently, "-q(x(A~) < x(A)), and x(A) < x(B). [] 

Lemma 4. If  EeN(R),  E =_s,.(x) for the observable xsY' ,  then 
dim(x(E')) > m, r E '  ~ E and Vm ~ N [dimension of  the subspace x(E') in H 
cannot be a finite number]. 

Proof From the contrary. Let 3E' c E and 3m0~N such that 

dim(x(E')) = m0 (4.22) 

~Here we denoted by x(2) the value of the L~'-valued measure x such that 3EeR +, V~eR +, 

< E -o x(2) = x((2 - 6, 2 + 6)) (4.19) 
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Then VE" c E', x(E") < x(E'), and dim(x(E")) < dim(x(E')). It is true be- 
cause of the previous lemma, and because of the ordering of subspaces of 
H by inclusion. Since the function dim: 8 ~ ~-+ • is bounded below, one has 
3m'~N, 3I~&(R), such that dim(x(/)) = m', and X/I'~ 1 

dim(x(/)) = dim(x(/)) = m' 
x(I') < x(I) (4.23) 

This clearly contradicts the properties of L,e-valued measures. III 

Now we are ready to show that the description of "eigenstates" 
corresponding to the points of the continuous spectrum of x has an 
intrinsic contradiction. 

We can in principle define such an "eigenstate" for point 2 as 

(3roar +) (Vr < ro) (m;~(x(Br(2))= 1 & (VE ~_~(R)) 

(2 q~E ~ m;.(x(E)) = 0) (4.24) 

Assume that such a state exists if 2 ~sc(x). Thus, it is clear that it is 
"localized" in the point 2 and by the Gleason theorem a one-dimensional 
subspace of H corresponds to it. On the other hand, if Br(2) is a vicinity of 
2esc(x), then for all r~R + the subspaces x(Br(2)) of H are infinite 
dimensional. 

Thus, one is forced to define a "limit transition" from the infinite 
dimensional "eigensubspace" corresponding to any infinitely small interval 
including 2 to a one-dimensional eigensubspace corresponding to the point 
2. Unfortunately, in usual mathematics one cannot proceed in that way, 
simply because one cannot convert infinity to a finite number. 

Moreover, if one defines artificially such an eigenstate for any point 
2 ~sc(x), the number of such states is obviously uncountable. Again by the 
Gleason theorem, to any such state a vector ~b~H, tl = 1, coincides, 
and it is easy to show the mutual orthogonality of these vectors. 

Consequently, the existence of an uncountable basis has to be allowed 
in H, which contradicts the separability of Hilbert space H. 

Conclusion 7. 1. In the formalism of quantum mechanics based on the 
quantum logic (W, L:(H), (9), eigenstates associated with the unit vectors 
of Hilbert space H are defined only for isolated points of the observable 
spectra. 

2. An element of L,e(H) coinciding with a point of the spectrum of an 
observable x ~ and defined as 

x(2) = x((2 -- 6, 2 + 6))~s (4.25) 
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for any sufficiently small 6, exists only for isolated points of s(x). Its 
existence is the necessary and sufficient condition for 2 ~ R to belong to the 
discrete spectrum of the observable x. 

3. The Dirac formalism in which the eigenstates exist for all points 
of the observables spectrum cannot follow from the quantum logic 
(~ ,  ~e(H), ~ ) .  

5. NONSTANDARD QUANTUM LOGIC 

In this section we shall build a nonstandard extension of the quantum 
logic formulated in the previous section. 

We suppose that the following sets are contained in the set of 
individuals S of the standard superstructure I?(S): 

~--complete ordered field of real numbers 
LP--full irreducible OAC-lattice of propositions 
C--field of complex numbers 
H--separable Hilbert space over C 

Then the family of Borel subsets ~(~),  the family of L~-valued measures 
X, the lattice Lf(H), and the family of probability measure ~ are contained 
in the standard superstructure I?(S). 

The set of nonstandard individuals *S is then 

*S = *~w *Ae u *Cu *H (5.1) 

The fields *R, *C, and the nonstandard Hilbert space are considered in 
Davis (1977), Stroyan and Luxemburg (1976), Albeverio et aL (1950), and 
Farrukh (1975). We are left with the extended lattice *Ae. 

The study of *~, ~(*H), *Ae(H), and *ff proceeds by the transfer 
theorem (Theorem 1) because these sets are defined in the standard 
superstructure by axiom systems (formulas) of the language L(~'(S)). 

Accordingly, these axioms are true also by their interpretation in the 
nonstandard superstructure I?(*S) if one adds the adjective "internal" 
where it is needed. Thus a nonstandard (extended) quantum logic can also 
be called an "internal quantum logic." 

5.1. Lattice of  Propositions 

We suppose that A ~ _~ S. This means that the nonstandard extension 
of L~ can be built by the ultraproduct construction (2.3). If I is some index 
set, and ~ is a free ultrafilter on I, then *LP = LPt/~ is a quotient set of 
the set of functions from I to A ~ by the equivalence relation 

( f  ~ g  ~{ i s l l f ( i )  = g ( i ) } ~ ,  f , g ~ A  ~ (5.2) 
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The nontriviality of such an extension, i.e., s  *2" and s ~ .s 
depends on the choice of I and f t .  But its properties under consideration 
do not depend on this choice providing nontriviality of the extension of the 
real field N. This is obviously so in our model, thus we shall not make I and 
J concrete. 

Applying the transfer theorem to the lattice 2 '  defined by the axiom 
system of Section 3, one gets the following result. 

Theorem 3. Let 2" _ S and Axioms 6-9 be true in I2(S). 
Then *2" is an irreducible OAC-lattice, where every internal subset of 

it has the least upper and the greatest lower bounds. 

Proof. Trivial usage of the transfer theorem. For example, sentence 1 
of Axiom 6 is translated to the following one: 

Vxe*s a (x v x  =x )  & (x AX =x)  (5.3) 

Internal operations * v and * A are continuations of the operations v and 
A on ~ ,  because 2" is contained in the set of individuals S. Thus we shall 
omit stars at these operations. 

Completeness of the lattice ~ is translated 
(3a e*2") (Vx cA) 

& (3ts*~e) (VxeA) 

x A a = a  

X A t = t - - * a A t = t  

into (VA e'N(2")) 

(5.4) 

(5.5) 

and dually for v .  
Thus the notions of the least upper bound and the greatest lower 

bound cannot be defined for every subset of *2", but for internal sets of 
*2" only. I 

Definition 3. A lattice in the nonstandard superstructure V(*S) where 
every internal subset of it [such that A ___ *2" and A e*I~(S)] has the least 
upper bound and greatest lower bound is called internally complete. 

Then *2" is internally complete. 
The universal boundaries of s and "5r coincide. Since 2" _ S, ie2",  

0e& ~ then *e=0 ,  * i =  i, i.e., the universal boundaries are standard 
elements of *Ae. Because of the property 

Vx~2" (~ _< x) & (x < i) (5.6) 

in 2", one has in *L~ a 

Vxe*2" (0 -< x) & (x ~ i) (5.7) 

This proves that 0 and i actually are the universal boundaries in *2". 
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A more detailed study of * ~  is not given here. We turn now to the 
lattice of subspaces of Hilbert space La(H). The existence of the isomor- 
phism /~ between ~ and ~e(H) (Conclusion 5) leads to the following 
statement. 

Theorem 4. * ~ ( H )  is an internally complete OAC-lattice. Elements of 
*~e(H) are closed internal subsets of nonstandard Hilbert space *H. 

The proof of this theorem is a straightforward application of the 
transfer theorem to the # mapping. Since the Hilbert space H and the 
lattice of propositions f f  together belong to the set of individuals, the bi- 
jection # belongs to the standard universum 17"(S). But because the elements 
of the set of all the closed subspaces of H, La(H), do not lie in the set of 
individuals, the extension of the mapping/~ in 17"(*S) will not be defined on 
all the elements of f f (*H) (the set of all closed subspaces of *H), but on 
the internal sets of it only [belonging to *~(H)].  

5.2. Range of Observables 

The family of the Borel subsets ~ (~ )  in the standard universum I7"(S) 
is defined by Axiom 1. By the transfer theorem, one gets the definition of 
*~(R) in the nonstandard superstructure: 

1. v{a', I i e • } ~*~(~(R)) 

2. (VEs*~(R)) (*R\Es*~(R)).  
3. (Vxs*R) (Vrs*R § 

Br(x) -- {ye*R[ Ix - y [  < r}e*~(R) (5.9) 

In other words, *~(R) is a family of internal subsets of hyperreal axis 
*R, which contains unions and intersections of any internal hypersequences 
(parametrized by the nonstandard natural numbers *N), complementations 
to Ee*~(R) ,  and internal open balls in *R. 

5.3. Observables 

The set of observables in the standard quantum logic is the family of 
&a-valued measures 3~ (Conclusion 4). 

By the transfer theorem we can get the set of internal observables *gf. 
If x e * ~ ,  then xE*&a(H)x *~(R), x maps *~(R) to *~e(H), and 
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* f  e*#(*oW(~q) x *#3(N)) such that: 

t. (VE~ s*N(N)) (VE2s*~(R)) (g/~ ~*s 

F~, hE2 = N ~v(E,)  • u(E~) (5.10) 

2. V{E, IiE*~}~*~(,~(R)) (i #j--* E~c~Ej = (~) (V l~*s  r) 

/~(~U. E , ) = y  /t(E~) (5.11) 

3. (V# ~ * f )  

(~(~) = 6) & (~(*R) = i)  (5.12) 

Because of the isomorphism between the elements of lattice Aa(H) 
and the orthogonal projectors on the closed subspaces of H, we can say 
that an internal projector on the closed internal subspace of *H corre- 
sponds to every element of *H. Since a projector-valued measure 
Pe =px(e), E ~ ( R ) ,  corresponds to every observable x ~ ' ,  we put into 
coincidence to every xE*X, an internal projector-valued "measure" 
pe =px(E), E~*~(R),  with the properties: (Vx~*f)  

1. vE,~*~(~), vE~*~(~)  

E, hE2 = ~ - "  PE,PE2 = Pe2PF., = 0 (5.13) 

2. V{EiIi~*N}6*,#(.~(R)) (i ~j--* E i n E  j = (~5) 

?U~, = ~ PE, (5.14) 
IE*N 

3. 

P~ = 0, P.n = 1 (5.15) 

Such a mapping is not a measure in the usual sense, because the 
hyperreal sequences are parametrized by the numbers of *N and are not 
countable. 

5.4. States  

States in the standard theory are functions from ~ ( H )  to [0, 1] _~ 
with the properties of probability measures (Conclusion 3). 

Exactly as was done for the observables, one can build the internal set 
of internal functions *ff ~* I7"(S). 

Then *f~ is an order-defining family of *a-convex *-probability "mea- 
sures" on *L~(H). 
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More clearly, *a-convexity is an internal analog of  e-convexity in the 
nonstandard case: 

(V {02i ( ' ) l i  e * ~ } e*~(f#)) 
e'f#) 

(V{ti[i~*l~}e*~(R+)) (~-~ie.~ti = 1) (3~ ( ' )  

( 02 = Z tf i ,)  (5.16) 
i ~ * ~  

i.e., internal *a-convex hypersums of the elements of *f# also are in *f#. 
The sentence "the elements of *f# are *-probability measures on 

*Sa(H)" means: 
The value of  a measure m e ' f#  on the element of  * ~  which is the least 

upper bound of an internal hypersequence of orthogonal elements of * ~  is 
equal to the internal hypersum of the values of the measure m on the 
elements of this hypersequence: 

(Vc~(.) e'f#) (V{{ai}~,n}e*~(~La(H))) (i ~j--+a; .L aj) 

\ i ~*~  ,/ i~*~ 

It is clear that the measure m is not a usual probability measure. 
By the Gleason theorem, any element m e f# is of  the form m( �9 ) = 

~i~N ti(q~i, P ( ) r  
The nonstandard analog of this is 

me*f# ~ m ( .  ) = • ti(c#,, P()dpi) (5.18) 
i e*~  

where t; is an internal hypersequence {ti [ i e*~}e*~(R+) ,  ~~*N t~ = 1, and 
r is an internal hypersequence of vectors of *H: 

t14', I1 = 1, vie*t~ (5.19) 

Note that the space *H cannot be separable, because of the nontrivial- 
ity of our extension. Then an uncountable orthogonal basis can exist in *H. 
Thus, as will be shown later, a set of  eigenstates parametrized by the points 
of the continuous spectrum of some internal observable x e*:Y can exist in 
the nonstandard quantum logic. 

6. SPECTRAL AXIOM AND DIRAC'S FORMALISM 

Here we shall discuss spectral (more exactly, hyperspectral) properties 
of  internal observables x e*:Y, 
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Since the hyperspectrum of the internal observables from *W is defined 
by the transfer principle, it is a subset of the hyperreal axis *R. But if we 
suppose that its finite part [lying in the set of finite numbers of *•, see 
(2.8)] is a subset of the usual standard numbers *~, then the extended 
quantum logic will have properties of the Dirac bra-ket formalism. That is, 
in this quantum theory the spectral properties of the observables are the 
same for both those with discrete and with continuous spectrum, because 
they all will have the hyperdiscrete spectrum according to *R. The special 
condition for this to be true will be introduced in our Spectral Axiom. 

The physical meaning of this axiom can be interpreted as follows: 
"Propositions" which correspond to the internal observables x(E) and 

x(E') from .~r are supposed to be equal if the intervals E and E' from 
*~(g~) are different only on an infinitesimal set A = (E\E ' )u  (E'\E) such 
that x, y 6A ~ x ~ y. In other words, if we call A the error of measuring an 
observable x ~*Sf, then the infinitesimal measuring error does not lead to a 
change of proposition. Thus, such an error does not influence the probabil- 
ity value to find the physical system in the interval E of the range of the 
observable x ~'2~. 

This in principle corresponds with our intuition on the nature of 
measuring apparatuses. Actually, any measuring apparatus can distinguish 
only the finite values of observables and with a definite nonzero error. If we 
formulate this correctly in the language of infinitesimal errors, we shall get 
a formalism of quantum mechanics with Dirac's properties. 

6.1. Hyperresolvent and Hyperspectrum 

The hyperspectrum of an internal observable x 6*~r is a subset of the 
hyperreal axis *~, which we shall define by the transfer principle. Remem- 
bering the definitions of the standard resolvent and spectrum [see (4.1), 
(4.2)], in the nonstandard universum we have (Vx s*Sf) 

*r(x) = U {IE*~(R)[7(x(I)) = 0 Vo~*f#} & (*s(x) = *~\*r(x)) (6.1) 

We shall call *r(x) the hyperresolvent and *s(x) the hyperspectrum of an 
internal observable x ~*Y'. 

Since the spectrum is defined by the formula of L(I;'(S)), the hyper- 
spectrum *r(x) of x~*Y" in 17"(*S) is an internal set. 

We shall introduce now the promised spectral axiom about the inter- 
nal observables x ~*Y'. 

Axiom 12. Spectral Axiom. The intersection between the hyperspec- 
trum *s(x) of internal observables and the finite part of the hyperreal axis 
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Fin(*R) is a subset of the set of standard numbers ~6 

Vx~*X (*r(x) nFin(*R)  __ ~) (6.2) 

Definition 4. The hyperspectrum *s(x) of an internal observable x e*Sf 
is called hyperdiscrete in a point 2 ~  if: ~E~*R +, V6~*~ +, 

< E ~ x(Ba(k)) = x(B~(2)) (6.3) 

This definition is exactly transferred into the nonstandard universum 
condition (4.4) for the spectrum to be discrete. 

6.2. Spectral Properties of Internal Observables 

We shall define as *(Y', ~e, ~ ) s  the nonstandard quantum logic such 
that the Spectral Axiom 12 is true in it. 

Definition 5. We shall call by the spectrum of the internal observable 
xe*Y" in *(X, 5r (9)~ theory the finite (and, consequently, standard) part 
of its hyperspectrum 

Theorem 5. Every observable x ~*Y" in *(Y', ~ ,  ff)~ theory has hyper- 
discrete spectrum. 

Proof If  I ~*~(~ ) ,  I n R  = ~ ,  then by Axiom 12 and by the defini- 
tion (6.1) of hyperspectrum, V~ ~,~r (o~(x(I)) = 0). 

Let k ~*s(x), 2 ~ ~, and Br,(2) c Br(2), where Br(2 ) is an internal ball in 
*R with its center in the standard point k. 

If  r ~ 0 ,  r '~O,  r r  then 

A = Br(2)\Br,(2) & A ~ R (6.4) 

and A is an internal set. 
Then x(Br(2)) = x(Br,(2) u A) = x(B~, (2) v x(A)) = x(B~,(2)), since A _ 

Fin(*R) and A ~ R ~ x ( A )  = 0. Thus, for any point 2 ~ R of the spectrum 
of x~*Y" there exists its infinitesimal vicinity such that the values of 
*La-valued measure x( �9 ) are constant within it. �9 

Now we shall use the following consequence of the fact that the real 
axis R possesses the Hausdorff topology (Albeverio et aL, 1986): there is a 
one-to-one correspondence between every standard point k of R and a set 

6It can be shown also that the hyperspectrum must contain also some infinite points from *~ 
if it contains all the real axis *R (Albeverio et al., 1986). In other words, if the hyperspectrum 
of x e * ~  r is "unbounded" in the usual sense, it contains also the "limit" infinite points from 
Inf(*R). 
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of points infinitesimally close to it (the "monad" of this point) 

= - y l - - 0 }  (6.5) 

Then to all the propositions x(Br(2)), r ~ 0, ~eR, defined in *(W, ~ ,  ff)~ 
theory one can put to coincidence the proposition x(A) for any 2 e R as 

x(2) = x(B, ~ 0)(2) (6.6) 

This is so since the ball B,(2), r ~ 0, belongs to the monad of the point ,~, 
and by theorem 5 the proposition x(Br(2)) is not changed for any r ~ 0. 

The function of dimension (4.8), dim: g~ ~_ L,g(H) ~ ~, can be ex- 
tended in * IT(S): 

�9 dim: *~~ __ *L~'(H) ~ *t~ (6.7) 

The *dim function is defined on the hyperfinite (Davis, 1977) subspaces of 
�9 ~ (H) ,  i.e., such that 

a~*8  ~ ~ 3n~*N *dim(a) < n (6.8) 

If *dim(x(E))~N, we say that the dimension of the subspace 
x(E) E*~(H)  is finite. If *dim(x(E)) e * ~ \ N ,  it is hyperfinite. 

Definition 6. 1. If *dim(x(2))= 1, then 2 is a simple hyperdiscrete 
point of the spectrum of the internal observable x. 

2. If *dim(x(2))~ N, then 2 is a point of the spectrum of x of finite 
multiplicity. 

3, If *dim(x(2))e*N\N, then ;t is a point of hyperfinite (or infinite) 
multiplicity of the spectrum of the observable x ~*X. 

Note that we have given such definitions for the points of the spectrum 
(the finite part of the hyperspectrum) of the internal observables x~*~r 
because the propositions x(~,) are defined only for the finite points of the 
hyperreal axis *~. 

6.3. Eigenstates 

To every simple hyperdiscrete point of the spectrum of an observable 
x ~*~ of *(X, L#, ff)s theory an eigenstate corresponds with the properties 
analogous to those of the standard quantum logic (4.12), (4.13). 

Transferring the Gleason theorem to the nonstandard universum, one 
has: for every pure state from *ff there exists one and only one internal 
function m~ such that 

m~(g)=(d?,eM~), q~*H,  ][~b][=l, M~*L#(H) (6.9) 
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The set of  states *~ is nothing else but the family of  all convex 
combinations of pure states like m+. 

Then, let m = m  e , qS~*H, []q~[I = 1, 2 ~ ,  and 

PX((~-~';~+~)) 49 = ~b if 6 ~ 0  (6.10) 

Such a choice is possible because *dim(x((2 - 6 ,  2 + 6))) = 1 by Definition 6. 
It can be easily shown also that 

PX((~-a';'+~))P~((~'-~"z+~'))=O, 2 :~2 ' ,  6 ,~0,  6 " , e O  (6.11) 

Indeed: 

1. The metric topology of  the real axis is the Hausdorff  one. Thus, if 
6 ~ 0 ,  6 ' ~ 0 ,  and 2 r  2, 2 '~N, then 

(4 -- 6, 2 + 6) n (2' -- 6', 4' + 6') = ~Z~ (6.12) 

2. Properties of the projector-valued measures [see (3.39)-(3.41)] are 
translated to the nonstandard universum. 

3. The interval (4 - 6, 2 + 6) lies in *~(R)  and therefore is an internal 
set. 

Then, 

m~(x((2 - 6, 2 + 6))) = (~b, px((~ - ~.~ + ~))q~) = 1 

and 

mo(x((2' - 6', 2'  + 6'))) = (q~, px((a ' -  ~',z+ ~'))4)) 

= (c~, px((~ - ~,~ + ~))px<(~' - ~',~" + ~'))qg) = 0 

for any 2 # 2'  and 6, 6' ~ 0. 
Thus, the state m+ = m e ,  is an eigenstate by the definition (4.12), 

(4.13), 2 being the corresponding eigenvalue. 
We conclude that for every internal observable x +*of a set of eigen- 

states can exist which is parametrized by the points of its spectrum (not 
hyperspectrum!) and, possibly, not countable: 

(6.13) 
0, 2 # 2 '  

mo~(x(2")) = 6zv = 1, 2 = 2" 

Since the unit vectors ~bxs*H correspond to the states m~,  it is easy 
to see that if 2 ~ 2', then (~b;., ~bx.) = 0. 

Thus, a family of  orthogonal vectors {~b x ]keN} __ *H corresponds to 
every internal observable x e*~ 
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of  an internal observable x ~*Sf in the eigenstate The mean value 
m~a = m~ is 

m;~(x) = * ~ 2'm).(x(2')) = 2 (6.14) 
2"E~ 

So, this definition is consistent. 

7. C O N C L U S I O N S  

The extended quantum logic (which was built by applying the transfer 
theorem to the usual quantum logic), where the Spectral Axiom 12 is true 
for all the internal observables, admits the existence of eigenstates for any 

finite points of  their spectra. 
I f  an internal observable has a simple hyperdiscrete spectrum, then a 

family of  eigenstates mx corresponds to it, and the corresponding vectors in 
hyper-Hilbert  space *H form a (possibly uncountable and not necessary 
full) or thonormal  basis in *H. 

I f  the physical system is in the eigenstate m~ of  x ~*Y', then the mean 
value of x in this state is 2 (which is trivial but nevertheless important  for 
consistency of the new formalism). 

Finally, these properties do not depend at all on the kind of observable 
spectrum, i.e., it can be discrete or continuous in ~. 

A C K N O W L E D G M E N T S  

The author is greatly indebted to Dr. E. V. Stefanovich, Prof. B. P. 
Zapol, and Prof. A. Gersten for their deep interest in the present work. 

REFERENCES 

Akhiezer, I. M., and Glazman, I. M. (1950). Theory of Linear Operators in Hilbert Space, 
Gos. Izd. Tech. Lit., Moscow [in Russian]. 

Albeverio, $., Hoegh-Krohn, R., Fenstadt, J. E., and Lindstrom, T. (1986). Non-Standard 
Methods in Stochastic Analysis and Mathematical Physics, Academic Press, New York. 

Amemiya, I., and Araki, H. (1986). Publications of the Research Institute for Mathematical 
Sciences, Kyoto University, Series A2. 

Beltrametti, E. G., and Casinelli, G. (1976). Nuovo Cimento 6, 321-403. 
Davis, M. (1977). Applied Non-Standard Analysis, Wiley, New York. 
Dirac, P. A. M. (1958). The Principles of Quantum Mechanics, Clarendon Press, Oxford. 
Farrukh, M. O. (1975). Journal of Mathematical Physics, 16, 2. 
Gelfand, I. M., and Vilenkin, N. Ya. (1961). Some Applications of the Harmonical Analysis. 

Rigged Hilbert Spaces, Gos. Izd. Fiz.-Mat. Lit., Moscow [in Russian]. 
Gleason, A. M. (1957). Journal of Mathematics and Mechanics, 6, 885. 



338 Friedman 

Mackey, G. (1963). The Mathematical Foundations of Quantum Mechanics, Benjamin, New 
York. 

Maqzynski, M. J. (1972). Reports on Mathematical Physics, 3, 201-219. 
Melsheimer, O. (1974). Journal of Mathematical Physics, 15, 902-916. 
Piron, C. (1976). Foundations of Quantum Physics, Benjamin, New York. 
Roberts, J. E. (1966). Journal of Mathematical Physics, 7, 1097-1104. 
Stroyan, K. D., and Luxemburg, W. A. J. (1976). Introduction to the Theory of Infinitesimals, 

Academic Press, New York. 
Von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics, Princeton 

University Press, Princeton, New Jersey. 


